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SUMMARY

An approximate method is devised to determine temperature distri-

butions during the transient aerodynamic heating of thin-skinned, heat-

conducting bodies. This permits evaluation of the streamwise conduc-

tion errors arising in the measurement of heat-transfer coefficients

based on the skin-temperature history.

The present method is valid for a large range of body shapes and

thickness distributions, within the limitations of one-dimensional

(stresmwise) heat conduction, quasi-isothermal surface, constant adia-

batic wall temperature, and negligible radiative heat transfer.

Numerical computations were carried out for flat plates, wedges,

and conical, hemispherical, and hemicylindrical shells. The results

are presented in the form of nondimensional charts that permit a

rapid evaluation of a lO-percent error threshold in transient heat-

transfer measurements.

INTRODUCTION

The transient heating of thin-skinned bodies subjected to an aero-

_ynamlc heat input has a wide practical interest in hlgh-speed flight

and model testing. This is, in general, a problem of three-dimensional

time-dependent heat conduction where the heat input depends on the sur-

face temperature distribution. This problem appears to be too compli-

cated for generalized treatment and therefore several restrictive

assumptions are necessary in order to make it amenable to computation.

One such assumption is the restriction to two-dimensional heat

flow, which is realized under two-dimensional or axisymmetrical condi-

tions. A second assumption is that the body be in a quasi-isothermal

state. This allows the use of a constant-temperature heat-transfer
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coefficient which is a function of longitudinal coordinate alone. The
previous assumptions reduce the problem to that of two-dimensional
transient heat conduction in the presence of a heat input represented
by a time-independent heat-transfer coefficient, or constant heat-
transfer coefficient and varying forcing function (adiabatic wall
temperature ).

The present investigation is concerned with the longitudinal con-
duction in the case where normal heating (across the skin) is assumed
to be of a calorimetric type under a step forcing function. The thermal
conductivity of the skin is assumedinfinite in a direction perpendicular
to the surface and the internal surface is assumedinsulated, therefore
the temperature is assumedconstant across the skin. This is a good
approximation in the case of thin-skinned bodies having a well insulated
internal surface. Nevertheless, it must be kept in mind that normal
conduction effects cannot be neglected at the very early times after
time equal O, whenthe temperature-time slopes of the outer and inner
skin surfaces are substantially different. In any case, the problem of
normal conduction in the absence of longitud_nal conduction has been
investigated in the past and solutions are available. (See, for instance,
refs. i and 2.) Whennormal conduction proves to be significant, a first
approximation to the complete picture maybe obtained by writing the heat
balance in an element of skin including both heat flows as obtained from
the longitudinal and normal solutions.

Longitudinal conduction has the effect (f relieving thermal con-
centration in the skin; it also distorts hea_-transfer computations
based on measuredskin temperature history. The present investigation
was initiated to obtain an approximate solution that would predict these
effects, especially from the viewpoint of the error introduced in heat-
transfer measurements. Under the assumption_ previously mentioned, the
solution obtained is applicable to bodies of arbitrary shape and thick-
ness distribution, except for regions in the neighborhood of discon-
tinuities in heat input, cross-sectional area, thickness distribution,
or their derivatives. Numerical results are presented for simple shapes
with heat inputs appropriate to laminar and i urbulent boundary layers.

SYMBOLS

ALJ

area of surface perpendicular to longitudinal (streamwise)

direction

i = 1,2,3, • " j = 1,2,3,
eq tions(i i'

functions given by



c specific heat of skin material

cf local skin-friction coefficient

CL,CT,CY input parameters (table I)

FL,FT input parameters (table I)

G dimensionless temperature variable,

Gi

h

hi

Hi

k

KI_K2

Z

L

m

M

n

Nu

P

P(X)

Pr

q

a(x)

T - Tt= O

Taw - Tt__O

i = 1,2_3, . temperature components defined by

equations (9)i (i0)_ and (ii)

heat-transfer coefficient

indicated heat-transfer coefficient, defined by equation (17)

i = 1,2,3,4,5,6 constants representing heat-transfer level,

h_ or hX 1/5

thermal conductivity

arbitrary constants

skin thickness

characteristic length

mass of skin element

Mach number

arbitrary constant

Nusselt number based on coordinate x

pressure

characteristic function defined by equation (6)

Prandtl number

total heat flow per unit time

characteristic function defined by equation (7)
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r

Re

s

S

St

t

T

T'

U

V

v

WE,WT

X

X

c_

B

7

e'
w

A

outer radius of hemispherical or henicylindrical shell

inner radius of hemispherical or henicylindrical shell

Reynolds number based on coordinate x

lateral area subjected to aerodynamic heating

input parameter (table I)

Stanton number

time

skin temperature

reference temperature

velocity at edge of boundary layer

volume of skin element

speed of sound

input parameters (table I)

longitudinal coordinate

dimensionless longitudinal coordina_e (table I)

thermal diffusivity of skin material.

arbitrary constant

ratio of specific heats for air

nondimensional solution for the hea-;ing of the yawed cylinder_

from reference 3

yaw angle

viscosity of air

kinematic viscosity of air

density of skin material

Fourier number, -x t
L_

L

i

2

2

7

f

/
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L

wedge angle

cone semiapex angle

temperature exponent in air viscosity law

refers to 10-percent-error point

Subscripts :

aw adiabatic wall

b

Z

raax

R

SL

SN

SP

w

0

oo

Superscripts :

!

wT

TTT

pertaining to body

variable is referred to the skin thickness

maximum value

variable is referred to the radius R

stagnation line conditions

conditions at the stagnation line derived from the normal

flow component

stagnation-point conditions

wall conditions

free-stream stagnation conditions

variable is referred to the diffusion distance per unit time
F-

free-stream conditions

* i
applies to XZ, X_ -

tan

first derivative with respect to X

second derivative _th respect to X

third derivative with respect to X

IV fourth derivative with respect to X
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THEORY

Heat-Conduction Equati )n

Consider one-dimensional heat conduction in a body of arbitrary

shape, the outside surface of which is subjected to aerodynamic heating

in the absence of radiation. Let an infinite:_imal volume element be

determined by two surfaces perpendicular to t ae longitudinal (x) direc-

tion, of area a and a + da and at a distance dx apart as repre-

sented in sketch (a):

.../ / x ds.',

t _ _ .j-.-"'- x

/ 1\

,_ a )_- a + da

L

i

2

2

7

f
Y

Sketch (a)

Let ds

heating.

surfaces

denote the element of lateral area subjected to aerodynamic

Since conduction is one-dimensional the temperature on the

a and a + da is constant and equal to T and T + _T dx,
bx

_Tdx
Tm =T+----

_x 2
respectively. The mean temperature of the element is

The heat balance in the element is

Heat stored = Aerodynamic heat in + Heat gained by conduction

The heat stored per unit time is

_W m

dqs = c dm-
bt



and if second-order differentials are neglected

_T
dqs = c _m_ = pc dV

(!)

The aerodynamic heat entering the element is

T I

dqaer o = h ds(Taw - Tm)

Again if second-order differentials are neglected

dqaer o = h dS(Taw - T) (2)

The heat gained by conduction through the surfaces a and a + da

x x+dx

is

and if second-order differentials are neglected

_2T
dqg c = ka dx + k da

_x2 _x
(3)

Therefore, the heat balance can be written as

_T _ h (Taw - T) + _ --_2T + _ ida _f
_t dV _x2 a ax _x

_cd-7

(4)

since a dx : dV.

For the case of a timewise step heat input, constant adiabatic

wall temperature, and initially isothermal body_ the following dimen-

sionless variables are defined:

T - Tt_
G_

Taw - Tt_
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T ----_-_ t

X

L

where L is an appropriate reference length. Substitution into equa-

tion (4) leads to

bx2

where

P(X) = L2 h(X) (6)

dV(x'
pc _s '

and

f

Q(X) = i da (7)
dX

The functions P(X) and Q(X) describe th_ conditions (heat input and[

geometry) that characterize a particular prc)blem and therefore they may

be called the characteristic functions of t]_e problem. It may be noticed

that P and Q are assumed to be function;_ of X alone. For a given

geometry this is always the case for Q bu:, in general, this is not

true of P, which includes the aerodynamic heat-transfer coefficient h.

In a strict sense, h depends upon the waiL-temperature level and its

distribution shape, and therefore it is, in general, a function of time

as the body exchanges heat with the surrounlings. However, there are

many cases where the time dependency of h can be neglected. The fol-

lowing restriction is therefore imposed: the present solution is appli-

cable to those cases where the aerodynamic _eat-transfer coefficient can

be considered to be a function of the longi_udinal coordinate alone,

and this will be referred to as a auasi-iso_hermal state of the body.

The restrictions on equation (5) may t_en be summarized as:

i. 0ne-dimensional longitudinal (streamwise) heat conduction

2. Negligible radiation compared with aerodynamic heat input
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3. Value of Taw constant with time after t = 0, independent of X

4. Quasi-isothermal state of the body as defined previously

A further limitation concerns the behavior of the characteristic func-

tions P(X) and Q(X). These functions may have singularities at the

leading edge of sharp bodies, or where discontinuities of cross-sectional

area or thickness distribution occur. The present a_proximate solution

yields finite results only where P(X), Q(X), and their derivatives are

continuous functions of X. (See eqs. (15).) Where discontinuities

such as multivalued derivatives of P(X) or Q(X) are present, inter-

ference between the regions on both sides of the discontinuity will

occur, and eventually will spread out to the neighboring regions.

Accordingly, care should be exercised in applying the present results

to bodies having such discontinuities.

Approximate Solution of the Heat Conduction Equation

An approximate solution of equation (5) has been obtained in the

form of a series G = GI + G2 + G3 + of which the first three

terms have been computed. This series was determined by writing equa-

tion (5) as

-- + -- + -- + = P(X) - (GI + G2 + G3 + .
_T _T _T

_2

+ -7(G1 + G_ + _3 +

+ Q(X)!(GI_x+ G2 + a3 +

.)

.) (s)

and letting the temperature components GI_

be defined by the differential equations

_G1_ P(X)(Z - Gi)
&

G2, and G3, respectively,

(9)

_o2 _2G__._Az
- p(X)G 2 + + Q(X)_-_£_i

o_
(io)
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_G3 - -P(X)G3 + __2C2 + Q(X)_-_-_32
(11)

Succeeding terms may be obtained s_milarly.

Such a separation of equation (5) is partly granted by the linearity

of the equation, and the results are validated a posteriori by comparison

with numerical integrations of equation (5) tc be discussed later.

The physical interpretation of the tempezature components GI, G2,

G3, and so forth, is the following: GI is t_e calorimetric temperature,

that is, the temperature that would exist in the absence of conduction;

G2 is the temperature introduced by conduction arising from the GI(X)

distribution, and it includes the "interference" term -P(X)G2, that is,

the perturbation in aerodynamic input due to the presence of G2; G3 is

due to the conduction arising from G2 plus its own "interference"; and

successive terms can be similarly interpreted.

In this way, an infinite series is obtaired as a solution to equa-

tion (5). If a finite number of components is used the last one should

include its own conduction for equation (5) to be satisfied exactly.
_2_

For instance, if three components are used, t_e terms °u3 + Q(X)_x-----_8x2
should be added to the right-hand side of equation (ii). Since this

would complicate the equation to the same degree as the original equa-

tion (eq. (5)), the conduction terms of G3 _re neglected in equa-

tion (ii) and they therefore represent the error introduced in the

solution.

The temperature G = GI + G2 + G3 should not be expected to satisfy

exactly the boundary conditions since it is not a complete solution. It

was found that, as the leading edge of sharp l odies is approached, the

first terms of the series become divergent and therefore no solution is

presented at or near the leading edge of sha_. bodies.

The procedure for solving equations (9), (i0), and (Ii) is the

following: the solution of equation (9) is

-PT
Gl=l-e

This temperature may be used to com_ute G 2 :'rom equation (I0), which

in turn allows the solution of equation (ii) :'or G3, and so on.

f

d"
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When such a procedure is followed, the results for the first three
terms are

G 1 = 1 - e-PT (12)

G2 = (All T2 - AI2T3)e -PT (13)

G3 = (A21 T3 - A22 T4 + A23T5 - A24T6)e -PT (14)

where

A11 = l(p,, + Qp,)

A12 = _(p, )2

A21 :_(pIV + 2P"Q' + P'Q" + 2P'"Q + P'QQ' + p,,Q2)

= 1 [13(P' 2p,,A25 3-_ ) + 5(P )3Q]

A2 4 = l_(p ,)4

(15)

In the preceding equations the functional dependency of P and Q

(defined in eqs. (6) and (7)) is omitted for brevity.

According to equation (5) the heat-transfer coefficient with con-

duction is

I_G _2G _)
dV -m+Q

h :7 c \y=a 1-a
(16)

The quantity

dv _ dV _t
h i _--_ pc - pc

ds i - G ds Taw - TL_
(17)
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is readily obtained from temperature-time measurementsand maybe termed
the indicated heat-transfer coefficient, which would be obtained from a
calorimetric (no conduction) analysis. Then from equation (16), the
ratio of hilh maybe expressed as

_2G+ Q ___G
_i=l+!_x 2 _x
h P i- G

According to the present solution this quantity is

_ 4
 [ llT- 3(A12-A21)T2 4A22 3 +

hi -i+

- 6A24T _ e -PT

h i - (aI + a2 + G3)
(18)

Equation (18) may be used as a correction for measured values of

the heat-transfer coeffieient_ that is

hcorrecte d = hi(measured ) (19)

f

J

Numerical Integraticn

The approximate solution previously described vas checked by com-

parison with direct integration of equation (5) in several particular

cases. Numerical integrations of equation (5) were carried out for a

flat plate and solid wedge, under specified heat inputs. Equation (5)

may be written in terms of finite differences as

(Z:_) 2

This equation, with the boundary conditions

GX, 0 = 0
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i

GO, a- = GZ:_,T

was integrated by steps with the aid of an IBM card-programed digital

computer.

This type of solution introduces an error due to the finite step

size; therefore small step sizes are desirable. Furthermore, in order

to obtain a solution, it was found that AT must be less than some

function of p.2 Hence, as fix is decreased AT must be decreased too.

This taxes the storage capabilities of the computer and, therefore,

solutions of this type may be expected to be restricted to short times.

Comparison between these numerical solutions for short times and the

approximate solutions of the present paper are discussed later in the
section entitled "Presentation of Results."

APPLICATION OF THE SOLUTION

The application of the present solution to a particular case con-

sists essentially in determining the functions Aij(X) given by equa-

tion (15) as functions of P and Q, with which equations (12), (13),

Y(14), and (18) may be computed, yielding G(X,T) and (X,T).

A detailed discussion of the functions Aij(X) is included in

appendix A for the flat plate, the wedge, and the conical shell with

laminar and turbulent boundary layers and for the hemispherical and the

hemicylindrical shells with laminar boundary layers. For each of these

cases computations were carried out by combining the heat-transfer level

and certain body properties in a free parameter called the input param-

eter (see definitions in table I). The characteristic length L was

IFor bodies having finite leading edges this boundary condition

follows directly from the condition of no heat conduction at the leading

edge _L_)0 T : 0]. For sharp bodies this is not necessarily so, but

' J • • " o "n
apparently the present boundary condition still holds, as pointed ut i
reference 4.

2For instance, for the case of a flat plate of constant thickness

a necessary condition for the step size is



particularized for each configuration in appendix A and is also shownin

table I. In this way, a set of curves G(X,T); X,T) was obtained

for each of the body shapes mentioned, for a :-ange of values of the cor-
responding input parameter. Thus, for any pa:fcicular set of free-stream
conditions and body properties, once the inpu_ parameter is calculated,
the present solution provides the temperature and heat-transfer correc-
tion as functions of time and the coordinate _)f the point.

A collection of methods for the estimation of the input parameter
from free-stream conditions is included in ap:)endix B for ready reference.

PRESENTATION OF RESULT_

Results of the numerical computations, as compared with the approxi-

mate solutions, are presented in figures i, 2, and 3 for particular

bodies and heat inputs. It may be seen that _ good agreement is obtained

for the temperature variable G and reasonab Le agreement is shown in

hi/h.

Results of the approximate solution, des:ribed in the previous

section, are too bulky for a complete presentltion. Therefore, only

one plot for a typical value of the input par nneter is presented for

each body shape in figures 4 to ll. In the p_rticular case of the

stagnation point of blunt bodies complete results including the effects

of the input parameters are presented in figures 12 and 13. For other

than this particular case the effects of the input parameters are

illustrated by means of partial results presented in figures 14 to 18

in the form of charts that provide a rapid means of calculating a

lO-percent error threshold in heat-transfer m_asurements. These charts

give the location and temperature of the poin_ where the error in

indicated heat-transfer coefficient is lO percent. This fictitious

point has a coordinate [X]l 0 that varies wi-_h time. At any given

instant, points at X > [X]10 or x < [X]l 0 will have errors in indi-

cated heat-transfer coefficient larger or smaller than l0 percent, as

the case may be.

4

LIMITING SOLUTIONS

Limiting solutions for hi/h for small zalues of

obtained by using the temperature

G I = i - e -PT

PT may be
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l

2
D
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in equation (16) and letting PT << i. For the flat plate, wedge, and

conical shell the heat-transfer coefficient is assumed to be propor-

tional to x-I/2 and x -I/5 for laminar and turbulent boundary layers,

respectively. When the condition PT << i is imposed, equations are

obtained for hi/h that are independent of the heat input. The coordi-

nate [X]I 0 of the point having a 10-percent conduction error may be

obtained by setting hi/h = I.i_ and it proves to be proportional to

the square root of the Fourier number 7 for all cases, as shown by

equations for the

flat plate with laminar boundary layer:

hih = i + _T_X_ -2

[Xz] i0 = 2.74T_ 1/2

(21a)

(21b)

flat plate with turbulent boundary layer:

hi - i + 6 -2T - _xz

[xz]io = 1.5_Tz1/2

(22a)

(_b)

wedge with laminar boundary layer:

9T X -2
hi=l+_e_h

[X_] i0 = 4.74T_ I/2

wedge with turbulent boundary layer:

h_!i= i +3-_r6 X

h 25 _ _

[X_]I 0 = 3.79T_ I/2

(e4a)

(24b)
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conical shell with laminar boundary layer:

hi i_ X -_ (25a)
T=I+zzz

=

conical shell with turbulent boundary layer:

hih - 1 + 2_TzXz-2 (26a)

[x_]lO = o.63T_1/2 (26b)

For the hemispherical and hemicylindrical shells in laminar flow

(heat-transfer coefficient assumed proportional to cos XR) , the cor-

responding equations are

for the hemispherical shell:

h-_i= i-h 2TR( I + -12PTR tan;)XR)
(27a)

L

I

2

2

7

J

[ R] o. 1 - e_R (2To)
tan 2 X i0 = pTR 2

and for the hemicylindrical shell:

__hih: i- TR(I + PT R tan2X.-_)
(28a)

o.m - _R (28b)I]--tan2 XR i0 pTR 2

At the stagnation point equations (27a) and (23a) yield, respectively,

h-ii= i - 2TR
h

(10-percent error at TR = 0.09)
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and

hi i - TR (10-percent error at TR = 0.I0)
h

L

As would be expected, the conduction error is larger in the hemispherical

shell due to the three-dimensional effect. As indicated by equations (27)

and (28) the limiting solutions for the hemispherical and hemicylindrical

shell are not independent of the heat input everywhere, since tan2X R

appears as a factor of PT. The limiting solutions are included in the

charts of figures 14 to 18 and it may be seen that they indicate the

correct trend.

DISCUSSION OF RESULTS

General Results

Figures 4 to ll show plots of G(X,T) (G = G1 + G2 + G3) and

_--_i(x,T) for typical values of the corresponding input parameter. (See

definitions in table I.) Solid lines correspond to regions where

I%1> I%1> t%1"
Flat plate t wedge, and conical shell.- For these bodies the results

are qualitatively similar. The temperature variable G, which is maximum

at the leading edge or tip_ decreases asymptotically to zero at infinity.

During the transient heating the ratio hi/h has to be zero at the

leading edge since h is assumed to be proportional to x-I/2 or x -I/5

and h i remains finite. (See, for instance, refs. 5 and 4.) This ratio

is equal to one at infinity, where conduction effects are not felt at

finite times. Points removed from the leading-edge region but at finite
/-- \o  t oes ave e rors  o nts

net gain of heat due to conduction. Consequently, at any time (except

t = 0) during the transient heating the curves _(X) must go through

a maximum. At early times these maximums are very near the leading

edge, in the region where the first three temperature components of the

present solution do not converge. At later times the maximums shift

progressively downstream (into the region of convergence of the first

three components) and become increasingly smaller, as illustrated

schematically in the following sketch, based on figures 4(b), 5(b), 6(b),

7(b),and 8(b):



18 4

hi

h

I

/

/
/

I /
I /

I/ /

IIf

III

f

I k
\

t_ / fk--"---_

/

0 [X]lO,tl IX] :.O,t3 IX] lO,t2 X

i

Sketch(b)

Hemispherical and hemicylindrical shells.- For these bodies the

heat input has been assumed to be of the for_ h = (Constant)(cos XR).

This distribution closely represents the actual heat input near the

stagnation region, and approximates it for v_lues of X R up to about

60 °. The cosinusoidal distribution becomes _nsuitable downstream of

transition regions or close t¢ XR = %, but the assump-boundary-layer

tion that Taw is independent of X R in an_ case restricts the use of

the present solution to regions nearer the slagnation point. The solu-

tion is presented for values of XR up to 6C ° to show trends. Within

these limitations the solutions show an X-wi_e monotonic decrease of

both G and hi/h. Values of hi/h are al_ays less than unity, which

means a net loss of heat due to conduction a_,d increasing negative errors

in a downstream direction.

For stagnation regions plots of hi/h _.s a function of G are

presented in figures 12 and 13. For the hemispherical shell (fig. 12)

a fourth temperature component G4 has been included, as described in

appendix A.
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A plot of the calorimetric temperature GI is also included (solid

lines, figs. 12 and 13). Points on the GI c_ves correspond to points

on the G curves lying on the same line of TR = Constant. If only GI

and TR are available, values of hi/h are obtained by reading the

ordinate of the corresponding point in the G curve (broken line).

Figures 12 and 13 allow evaluation of the relieving effects of conduc-

tion in the heating of stagnation regions by direct comparison of G

and GI. It may be noticed that the input parameters S and Cy play

a dominant role. For approximate values of S < i0 or Cy < 5, large

conduction (compared to the aerodynamic input) is present even for small

temperature rises, whereas for approximate values of S > 50 or Cy > 20,

conduction is small even for large temperature rises.

Ten-Percent Error Charts

In figures 14, 15, 16, 17, and 18 results are presented for the

point having a 10-percent conduction error, over a range of values of

the input parameters. This point has been chosen since it is believed

that the determination of a 10-percent conduction error threshold would

be useful in evaluating heat-transfer measurements and for purposes of

model design. Furthermore, it is believed that, while the first three

temperature components considered in the present numerical calculations

grant enough accuracy for the determination of errors of this order_

the computation of substantially larger errors should include more

temperature components.

Fl_t plate_ wedge, and conical shell3.- (Figs. 14, 15, and 16.)

From the previous discussion of these bodies it follows that the loca-

tion of the point having a 10-percent conduction error moves downstream

with time while the corresponding temperature increases. Except for the

immediate neighborhood of the leading edge, all points upstream of this

location gain heat by conduction at a rate of more than I0 percent of

the aerodynamic heat input whereas all points downstream gain heat at

a rate of less than i0 percent of the aerodynamic heat input.

During the early part of the temperature rise (G < 0.i) the down-

stream motion of the 10-percent-error point is very nearly proportional

31t was found that for the conical shell having a turbulent boundary

layer the curves of G plotted against X are very steep near the tip

and rapidly level off downstream (see fig. 9(a)). This places the

10-percent-error point in a relatively forward location, where the first

three temperature components do not converge satisfactorily (see

fig. 9(b)). Therefore, the 10-percent-error chart (fig. 16(b)) was

obtained by extrapolation of 1-percent, 2-percent, and 3-percent errors,

located well within the region of convergence.



0 J

to _ independently of the input parameter, as predicted by the limiting

solutions. This downstream motion continues at a decreasing speed until

it stops and reverses, as illustrated in sketc:h (b) and figures 4(b)

and }(b). Reversal points correspond to maxJnlums in the solid lines of

figures 14, 15_ and 16. These maximums were observed to occur at a given

value of [G]l 0 for each body and boundary-ll_yer combination considered.

__[X]10,max is attained the curres terminate, the termini-Shortly after

tion corresponding to the time when the maxim nn error becomes less than

l0 percent.

It was found that under different conditions (such as heat input

) for a given._temperature _ise [G]10, the locationand body properties

of the 10-percent error point _XJl 0 is inversely proportional to some

power of the input parameter. This relationship may be obtained from

the limiting solutions for small temperature rises. For instance, for

a flat plate in laminar flow the temperature rariable in the limiting

solution is

-PT
GI = I - e _ PT

f

i

and since

-1/2
p = FLX _

the result is approximately

-1/2
GI = FLX _ T

therefore, the time at which the 10-percent-error point will attain a

given position at a given temperature is

Replacing

for a flat plate with laminar boundary layer:

213F -213,.

in the corresponding limiting solution (eq. (21b) yields

(29a)
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Similarly, equations for the other bodies considered are obtained

for a flat plate with turbulent boundary layer:

r_ __/9 F -_/9-- lJlo (29b)

for a wedge with laminar boundary layer:

--

for a wedge with turbulent boundary layer:

[m=]10 (3 79) 512r_ I_14/I _wT \-_14

for a conical shell with laminar boundary layer:

( 29c )

(29d)

( 29e )

for a conical shell with turbulent boundary layer:

(29f)

Equations (29) were checked for large values of G by using the results

of the present solution presented in figures 14_ i_, and 16. It was

found that although the proportionality constants are not the same, the

functional relation between IX] i0 and the input parameters holds true

for large values of G.

The values of __[X]lO,max previously discussed follow the same pat-

tern since they occur at given values of [G]I O. The corresponding equa-

tions were obtained from the present solution by means of plots similar

to that shown in figure 19, and they are

for a flat plate with laminar boundary layer:

[X_ lO,max = 4"2-FL-2/3 (50a)
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for a flat plate with turbulent botuudarylayer:

[Xz] lO,max = 3.2FT-5/_ (30b)

for a wedge with laminar boundary layer:

lO ,max

for a wedge with turbulent boundary layer:

I.

for a conical shell with laminar boundary layer:

(3Oc)

(}Od)

Xz]lO,max = I'2CL-2/3 (30e)

f

for a conical shell with turbulent boundary layer:

[Xz] lO,max = 0.62CT-_/9 (3Of)

/
It must be noticed that large values of the input parameter _that

is, small values of [X]I 0 for a given temperature rise, and small

values of _ _.FX]lO,max) do not necessarily colrespond to forvard physical__

locations of the lO-percent point ._[Xll0 or the reversal point [x]lo_max_

since the input parameters include some powex of the reference length in

the numerator. The effect of the different larameters involved in deter-

mining the relative physical position of the lO-percent error point and

of the reversal point is better expressed by the; following equations that

follow directly from equations (29) and <30): [subscripts 1 and 2
represent two arbitrary sets of conditions hEving the same temperature

rise [G] lO)

flat plate and conical shell with laminar boundary layer:

(31a)
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flat plate and conical shell with turbulent boundary layer:

([x]lO)l (Ix]lO,max)l
k

wedge with laminar boundary layer:

([x]_o)_([x]_o,m_)_
([xl_o)_([X3_o,_)_ Ltan qOl ( b)l )

(3rob)

(31c)

wedge with turbulent boundary layer:

([x]=o,_)_ _tanq02(kb)2 [h(x)xl/5]_5/4
(3md)

Notice the different effect of the parameters indicated by the different

exponents: if, for instance, the thermal conductivity of a flat plate

laminar boundary layer is doubled, [xJlo,ma x is increased bywith

about 60 percent whereas the same variation in a wedge results in a

400-percent increase in [x]lo,ma x.

Hemispherical and hemicylindrical shells.- (Figs. 17 and 18.) In

these cases the lO-percent-error point moves with time toward the stagna-

tion region. Points upstream of its location (0.9 < hi/h < 1.0) lose

heat by conduction at a rate of less than I0 percent of the aerodynamic

input, and points downstream (hi/h < 0.9) lose heat at an increasing

rate, always larger than i0 percent of the aerodynamic heat input.

It was found that for the lO-percent-error point, for a given tem-

perature rise [G]Io, an increase of the input parameters S or Cy

always results in an increase of [XR]IO. This relationship may be

obtained directly from the results of figures 17 and 18, as shown in

figure 20 for three values of [G]I O. For small temperature rises the

same results may be obtained by making use of the limiting solutions.

For the case of a hemispherical shell, the temperature variable in the

limiting solution is
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-PTR
GI = i - e _ PT_.

and

P = S cos XR

therefore

GI
TR = S cos XR

Replacing P and TR in the limiting solution (eq. (27a)) and letting
hi/h = 0.9 (for the 10-percent-error point) _;ives

S = 20[GI]I0

and for constant [G_ I0 it follows that

dS sin[ XR]i0 fl+ <C 1d[XR]lO = 20[G1]lO cOS2[X_iI%L [GI]Io oS2_R ] lO

This is an essentially positive quantity, wh:ch means that an increase

in S at constant __fGlll0 results in an in_:rease in [XR]I0" The

same conclusions are applicable to the case of the hemicylindrical

shell.

It is also generally true that for any i_iven point XR, for a given

temperature rise G, an increase of the inpu; parameter results in

smaller conduction errors_ as illustrated fo:- the stagnation point in

figures 12 and 13.

From the previous considerations it is -;hen concluded that, in

order to decrease conduction errors for a given temperature rise, large

values of the input parameters are desirable. Inspection of the defini-

tions of the input parameters (table I) then leads to the conclusion

that small skin thickness and thermal conducnivity, and large body radius

L

i
2

2
7
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and stagnation heat-transfer coefficient (with body radius predominating)
are desirable in order to minimize conduction effects•

L
i
2
2
7

Typical Examplesof Application of Solutions

Flat plate with laminar boundary layer•- (Fig. ik(a).) The fol-

lowing conditions_ which may be typical of a wind-tunnel test, are

assumed:

M , • • • • • • • • • • • • • • • • • • • • • • • • • ° • • • •
5

oF 6oo
To' " " • " " " " " " " • " " " " " • • " " " • " • " " " •

Tw ' oF ............................ i00

Po, ib/sq in. gage ...................... 800

Z, in ............................. 0.030

_, sq ft/sec ....................... 46.3 X 10 -6

Material ....................... Stainless steel

The input parameter is calculated according to appendix B, and for this

case it is approximately FL = 0.03. From figure 14(a) the successive

locations and temperatures of the lO-percent-error point may be obtained

for this value of FL. For instance, at t = 3 seconds (T Z = 22.2) the

10-percent-error point is located 15 thicknesses aft of the leading edge

(FX_Io = 15)and its temperature corresponds to GI0 = 0.165, that is_

a 16.5-percent (of the potential) increase above the initial temperature.
/

Under the conditions assumed the maximum downstream position of the

10-percent-error point would be at 42 thicknesses aft of the leading

edge and would occur at t = 44.6 seconds (T Z = 330)- All stations

beyond that point will have conduction errors never in excess of i0 per-

cent of the aerodynamic heat input.

i inch-radius
Hemispherical shell with laminar boundary layer.- A _-

hemispherical shell is considered under the same free-stream conditions

as those for the flat plate in the preceding section• With

Btu Btu and _ = 0.030 inch
hsp = 0•0815 (sq ft)(sec)(°R) ' kb = i0 (ft)(hr)(OR),

the input parameter is S _ 21.6. The progress of the 10-percent-error

point may be approximately followed in figures 12 and 17 for S = 20.

When the stagnation point has experienced a temperature rise of

G = 0.52_ (at TR = 0.04, fig. 12) it has a conduction error of



7.8 percent; the lO-percent-error point is at 46° (fig. 17) and has a
temperature rise of 41 percent. The forward _1otion of the lO-percent-
error point continues until it reaches the stagnation point at
TR = 0.0506 (t _ 1.9 seconds) with G _ 0.6. After this time the con-
duction error is larger than i0 percent of th,_ aerodynamic input through-
out the body.

CONCLUDINGREMARKS

An approximate method has been devised t,_ compute transient tem-
perature distributions and streamwise conduction errors in heat-transfer
measurements. This method can be applied to a large range of body shapes
and thickness distributions, within the limitations of one-dimensional
heat conduction, time-independent heat-transfer coefficient, constant
adiabatic wall temperature, and negligible ra,[iation effects.

The method consists in evaluating the tel_erature as the summation
of temperature components, of which the first three (and in one case,
four) componentshave been calculated. The m,_thodis suitable for com-
putation by meansof an ordinary desk computi_igmachine.

Numerical computations were carried out for semi-infinite flat
plates, wedges, and conical shells, and for hemispherical and hemicylin-
drical shells. Free-stream conditions and b_ properties were included
in a free parameter, called input parameter. Complete results are pre-
sented for specific values of the input param_ter, and charts showing
the location and temperature of the point havLng a lO-percent conduction
error in measuredheat-transfer coefficient a:-e presented for a range
of values of the input parameter. This prese_ation permits a rapid
determination of a 10-percent-error threshold in heat-transfer
measurements.

In the cases of the semi-infinite flat pilate, the wedge, and the
conical shell all points except those in the i_mmediateneighborhood of
the leading edge or tip show a net gain of he_t due to conduction. The
fictitious lO-percent-error point movesdownstreamwith time with
decreasing speed until it stops and reverses Lts motion, thereby achieving
a maximumdownstreamposition. Since all poizlts downstreamof the
10-percent-error point have conduction errors smaller than i0 percent,
it follows that points downstreamof the maximumnever sustain errors
larger than i0 percent. The coordinate of thLs maximumposition increases
with increasing thermal conductivity of the sT_inand skin thickness or
wedgeangle, and decreasing heat-transfer lev,_l.

In the cases of hemispherical and hemicyLindrical shells there is
a net loss of heat due to conduction_ which increases in a downstream
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direction. The lO-percent-error point moves upstream with increasing

time until it reaches the stagnation point, after which it loses signif-

icance since the errors are larger than i0 percent throughout the body.

This occurs at values of the Fourier number, based on the radius, of

approximately 0.05 and 0.i0 for the hemisphere and hemicylinder, respec-

tively. For a given temperature rise, minimum conduction is achieved

with small skin thickness and thermal conductivity and large body radius

and stagnation heat transfer, body radius being the dominant factor.

Conversely, if large thermal relieving effects are sought near the

stagnation region, a thick, highly conductive skin with small nose

radius is desirable.

L_ugley Research Center,

National Aeronautics and Space Administration,

Langley Field, Va., March 27, 1961.
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APPENDIX A

APPLICATION OF THE SOLUTION TO 3IMPLE BODIES

This appendix is concerned with the application of the present solu-

tion to the following bodies, exposed to aerodynamic heat transfer through

laminar and turbulent boundary layers:

i. Flat plate

2. Solid wedge

3. Conical shell

4. Hemispherical shell

5. Hemicylindrical shell

All bodies except the solid wedge were assume_l to have constant skin
thickness.

rlhe heat-transfer coefficient was assume,l to be of the form

h = (Constant)(X-i/2) and h = Constant)(X -I/5)

for the first three bodies, and

h = (Constant) (cos X)

for the last two. A compilation of commonly used methods for estimating

the constants is included in appendix B.

When the heat-transfer coefficient is proportional to X -n, equa-

tions (15) reduce to a simpler form. Two exs_ples of particular interest

are :

For

equations (15) become

P(X) : K1 x-n

Q(x) = 0

L

i

2

2

7
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For

equations

A11 = _1KI_(_ + 1)X_(_+2 )

A12 = _K12n2X-(2n+2)

A21 = _l Kln( n + 1)(n + 2)(n + 3)X-(n+h)

A22 : 2_K12n2( n + l)(17n + 27)X -(2n+$)

A25 = 3_ Kl3n3(n + I)X -(3n+4)

A24= h4n ( n+4)
.J

(15) become

v(x) =_2x-n

Q(X) = !
X

29

(A1)

where KI, K2 '

A11 _ 1 K2n2x-(n+2 )

= 1 K22n2X_ (2n+2)
AI2

A21 = 6"i[2n2(n + 2)2x_(n+/_)

A22 : _ K22n2(17n2 + 28n + 8))[-(2n+4)

A23 : 3_ K25n3(13n + 8)X-(3n+4)

J

and n are arbitrary constants.

(_)
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ness

case

Flat Plate

This is the case of a semi-infinite flat )late of constant thick-

Z exposed to a two-dlmensional fluid flow on one side. In this

dV
--= Z and
ds

a(X) = Constant

Let the characteristic length

variables are

L be equal to I; then the nondimensional

x _ t

x_ =T _d T_ = _

and the characteristic functions P(X) and Q(X) become

p(XI) = lh(Xl) and Q(X_) = 0
kb

L

i

2

2

7

form

Laminar boundary layer.- The heat-transfer coefficient is of the

-i/e (xO=

the re fo re

P(XI) = FLXI-I/2

IH I

where FL _ kb

equations (AI)

Q(x ):o

Now the functions Aij(Xl) may be obtained from

=3}All 8 FLX'L -5/2

i FfX_-3
AI2 = _

(A3)

(Equaticns continued on next page)
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7z
A22: _ ;T,2×z-5

A23: _ ;L3×-ll/_
16o z

i F4" -6 j

Turbulent boundary laye_r._ In this case

h(x ) :
the re fo re

whe re

31

(A3)

z%
F T -= ____

kb

From equations (/hi), the following equations may be obtained:

All: _ _z-ll/5

=_ %2Xz-12/5AI2 75

528 -2l/_

38 FT2X _22/542 = 6D7

_3 = 13 -23/5m, 5 %3x 
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Solid Wedge

Consider a semi-infinite solid wedge haviI_g a wedge angle _ and

with aerodynamic heat transfer on one side only. The restriction of one-

dimensional heat conduction reduces the applicability of the present

solution to the front section where the thickness is small.

In this case there is no satisfactory phy_;ical reference length.

The variables were made nondimensional with reference to the diffusion

distance per unit time:

The re fo re

x and T_ = t

It may be noticed that, with this particular arrangement where the

unit time is implicit, the choice of the unit _ime determines the units

to be used for t and m. For instance, if t;le unit time is one second,

then T = t seconds and _ must be expressed in (length)2/sec.

If an element of unit width is considered, such as that indicated

in the following sketch:

qae ro

L

i

2

2

7

then

dV(X_) = _ tan q_ d_

:

a(X_) = _ X_ tan
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_3

Therefore the characteristic functions are

pc_rc_ tan fl0

L

i

2

2

7 where

Laminar boundary layer.- The heat-transfer coefficient is

h(_) : H3x_-I/2

Therefore

WL

tan

1

where

Then, equations (A2) yield

All = 8 \tan _7

3(WL _2X-5

lw( w_ ]_-5.5

1,059C WL h2y_z-7 I

(Equations continued on next page)

(A5)
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99f_ _3 8 o]

/

Turbulent boundary layer.- Here the heal-transfer coefficient is

h(_) = H4x_-l/5
and

then

= WT X-6/5
tan

whe re

H4
WT -=

pc_

From equations (A2) are obtained

18tWT I_-3.2

2:2 T . -4.4
AI2 = _-_

:,_f _ _ -_.__
_2:- _:: ._t---_W_/_

478t WT _xj6.48,

(Equations continued on next page)

(A5)

(A6)

L

i

2

2

7
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72 I WT \4 -8.8
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Conical Shell

Consider the case of a conical shell of constant thickness

included angle 24 as shown in the following sketch:

r

_ and

Let the nondimensional variables be

X C_

XZ = -- and T_ = --_ t

In the annular element of volume shown, for XZ __>XZ

a(Xz) = _2[cos _ + 2(X_ - Xz*)sin _]

ds = 2_2sin _ XZ dXz

It may be noticed that for the conical shell the "effective" thickness

_v__(__xr_d--s- 2 X_ ] is smaller than the physical thickness, which it

approaches asymptotically with x. Now the characteristic equations

are
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kb 1 ii(I*
1

2 _Z

QCx );
Xl - 2_ XZ*

where

* 1
X_ =_

tan ¢

Similarly, for Xl <= Xl

a(Xl) = _12sin _ tan ¢ Xl 2

dV = _13sin _ tan _ XZ 2 dXl

from which it follows that

 (xO:2
kb Xl

L

i

2

2

7

It may be noted that the derivatives of the characteristic functions
= X *have discontinuities at Xl Z ; therefore, interference effects are

to be expected between the tip and the shell. Further study of the tip

effect was not undertaken; however, this problem is treated in refer-

ence 4. Consequently, only the characteristic equations for XI >> XI*

are considered, that is:

:
kb
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These equations must be used with the understanding that they do not hold

true for regions in the neighborhood of the tip.

as

then

Laminar boundary layer.- The heat-transfer coefficient may be written

h(X_):%x_-l/2

_(Xz)--c_,x_-1/2

i

where

_H5

CL _ kb

Equations (A2) may again be used here, and they yield

1 CLX-_/2All =

A12:_cL2x_-6/2

A21 = _c_zc9/2
>

A22 : 17 C2

29 cL3x-11/2

_4 = 288 CL4X_-I2/2

Turbulent boundary layer.- The heat-transfer coefficient may be

expressed as

h(X_):%x_-l/_

The corresponding characteristic equations are then

P(x_): c_ -1/5

(AT)
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where

ZH6

CT kb

Further use of equations (A2) gives

All = _ CTXz-11/5

A12 = _ CTeXz-12/5

_ 121
A21 3,750 cTXz -21/5

119 CT2Xz-22/5
A22 = 5,000

53 -23/_
A23 = 18,750 CT3Xz

1 CT_z-2_/_
A24 = ii, 250

L

i

2

2
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Hemispherical Shell

Consider the case of a thin shell of variable thickness having a

hemispherical outer shape, shown in the follo_ing sketch:

/I

//f/

/.q R

/

/

The nondimensional variables are defined as f_llows:

XR x c_
= _- and TR = _ t
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In the annular volume element of which the upper cross section is indi-

cated in the sketch

a(XR) = 2_(RZ- _)sin XR

the re fo re

ds = 2_R2sin XR dXR

2

R2 h(xR)
_(x_)

0c_(1 -

1 +R-_ d(log_)
Q'XR'(] = tan XR R - _ dXR

2

If the shell has a constant thickness

R2 h(_)
_(XR)=-_

(pc_ i 2

i

Q(XR) = tan XR

If the boundary layer is laminar the heat-transfer coefficient may

be approximately represented by h(X R) = hsp cos XR for XR up to

about 70o . When this heat-transfer distribution is used the character-

istic functions for constant thickness may be written as

P(X R) = S cos XR

i

Q (XR) = tan XR



4O

where

S _--

i R 2

kb Z(I 2

and

The functions Aii(XR) are obtained by replacing the characteristic

functions and their derivatives in equations (15) which yield

All = -S cos XR

hsp denotes the heat-transfer coefficient at the stagnation point.

i

AI2 = _ S2sin2XR

2

A21 = _ S cos XR

2(3 2_A22 = S _ coS2XR - _

(A9)

3 S3sin2XR cos XR5

i S4sin4XR

L

i

2

2
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Stagnation Point for the Hemispherical Shell

The stagnation region of a hemispherical shell is of particular

interest since most blunt bodies may be very well represented by a

spherical shape in the neighborhood of the ncse, and this is a critical

area with respect to aerodynamic heat transfer. Furthermore, for axisym-

metrical flow the boundary layer may be expected to be always laminar

in the stagnation area, and the cosinusoidal distribution of heat-transfer

coefficient that was assumed closely represerts the actual conditions.

Consequently, in an effort to obtain a more _ccurate solution for the

stagnation point, a fourth temperature comporent term G4 was computed

for this particular case. By following the same general procedure

described in the text, the following results were obtained:

-ST R
GI(TR) = i - e

G2(TR) = _STR2e-STR
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where

5 S2TR4)e-STR

_ I 22 S2TR5 61 S3TR6)e-STRG4( R)= y STR4+ 17 -

5I e -STR+ 2TR 2 _ (_ S + 4)TR, + _ STR4 61 S2TR-2T R 15

i - G

G = GI + G2 + G 3 + G4

P(X R) = S cos XR

i

Q_'R//Y_ = tan X R

i R2

kb I(i 21 _) 2 hsP

Hemicylindrical Shell

In this case the thin shell has a hemicylindrical outer shape and

variable thickness Z. A sketch showing a cross section of the shell

perpendicular to the cylinder axis would be the same as the sketch sho_u]

for the hemispherical shell. The outer radius is used as the reference

length; therefore,

X CL

XR = _ and TR = _t

In the volume element indicated in the sketch, having unit depth,

a(XR) = _(XR)
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ds = R dXR

The "effective thickness" in this case is, them

and the characteristic functions are

If the thickness

i R2
-- h(XR)

is constant, these last tuo equations become

l_)

L

i

2

2

7

Q(XR) = 0

If the boundary layer is laminar the heat-tran_ fer coefficient may be
approximated by

h(X_):hSLcosX_

Therefore, the characteristic equations for corstant skin thickness may
be written

P(X R) = Cy cos XR

Q(x_): o
whe re

i R2

Cy -- kb _fl

and hsL is the heat-transfer coefficient at the stagnation line.
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Substitution of these equations and their derivatives into equa-
tions (15) yields

L

i

2

2

7

_ i Cy cos XRAll 2

AI 2 = i Cy2sin2XR
3

= i Cy cos X RA2_

cy2(_7oos2x_-_0)A22:

13
A23 - 30 Cy3sin2XR cos XR

1 Cy4sin4XRA24 = _-_

(A_O)
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_P_D_ B

ESTIMATION OF THE HEAT-TRANSFER DOEFFICIENT

Applications of the present solution to the particular cases of flat

plate, wedge, conical shell, hemispherical shell, and hemicylindrical

shell are presented in appendix A. In these applications only the func-

tional dependence of the heat-transfer coefficient upon the longitudinal

coordinate has been fixed. The input parameters FL, FT, WL, WT,

CL, CT, S_ and Cy were left arbitrary and nay be theoretically or

experimentally determined for each particular case. As a matter of

convenience, in this appendix are compiled a few commonly used methods

that may serve as a guide for the estimation cf the input parameters.

L

I
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2

7

Flat Plate With Laminar Boundary Layer

The input parameter is

where HI is defined by

ZH I
F L -

kb

Making use of the identity

-1/2
h(X )

h(X_) = Pr_(St _e) k_ _Re_/ft X -I/2

F L may be written as

FL = Pr_(St k/_)_ _bb k]R_
(B1)
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The heat-transfer parameter (St_)_ may be obtained, for instance,

from reference 6. Figure 21, reproduced from reference 6, shows a plot

of (St_-Re)_ as a function of Mach number and wall-temperature level.

L
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7

Flat Plate With Turbulent Boundary Layer

In this case the skin-friction coefficient may be obtained by using

a solution of the Blasius type for incompressible flow, in conjunction

with a T' reference-temperature method. Thus,

o

where the viscosity has been assumed to be proportional to T_°.

reference temperature T' may be obtained from reference 7 as

The

= z + o.o35M_2 + 0.45 -
T_

The heat-transfer coefficient is then obtained by means of the modified

Reynolds analogy

St = (Pr)-213 c__f
2

= O.02951_o(Pr.)i/3(Re_/ft)4/5(yI-0" 6487,-i'/5X7 -i/5" _ H2X.I,-I/5h(X_

where the value _ = 0.76 has been used. In this case the input param-

eter is
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therefore

v (B_)

where T'/T_ is a function of Mach number an_ wall-temperature ratio

given by equation (B2).

Wedge With Laminar Boundar_ Layer

The heat-transfer coefficient is the same as that for the flat

plate and, expressed in terms of the wedge variable X_, is

L

i

2

2

7

HI

_(x_): _ -_i_

was given for the flat plate as

therefore

HI = Pr_(St k_R_) k_ _°Tft

h(X_) = Pr=(St hFR_)=I_ _ft . 1/2_ll_ x_ = _sx_-_/2

and the input parameter W L -
H3

becomes

WL=Pr=(SthFR-e)=_bb (B4)
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The heat-transfer parameter St_ may be obtained from figure 21,

where local flow conditions outside the boundary layer are to be used

for the quantity ( )_.

Wedge With Turbulent Boundary Layer

The input parameter is

L

i

2

2

7
where H 4 is defined by

WT --

H4

h(X ):

and is related to the flat-plate value H2 through

therefore

H4 : H2 (_)i/5

h(Xcz) =0. 0295k_ (Pr_)l/3 (Re_/ft)4/5( TT__')-0" 648c _I/IOXcL_ i/5 = H4Xc _i/5

and

WT = 0.0295 _---(Pr _i/3(Re_/ft)4/Sc_2/5(TT-_')-0"648
k_ col

(Bs)

where T'/T_ may be computed from equation (B2). For an inclined sur-

face, the local flow conditions just outside the boundary layer are to

be used as the effective free-stream conditions.
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Cone With Laminar Boundar_ Layer

The input parameter is

_H5
CL -

kb

where H 5 is defined by

h(X )= -1/2

H 5 may be calculated with the aid of Mangler's transformation from a

flat-plate solution where the free-stream conditions are replaced by

the inviscid-flow conditions at the surface o] the cone. This gives

therefore

F V
HS= _IPr(St _--e)ook_

Re_/ft

L (one surface

[CL= _ Pr(St k/'R-e')oo_ cone surface
(_)

The heat-transfer parameter _St_Re_ may be, obtained from figure
21

by using the values of Mach number and static temperature that the

inviscid flow would have at the surface of the cone.

Cone With Turbulent Bound_a_" Layer

A cone with a turbulent boundary layer has the same skin-friction

coefficient as an equivalent flat plate having; a Reynolds number equal

to one-half that of the cone (ref. 8). The ec_uivalent flat plate is

one having free-stream conditions equal to th_ inviscid-flow conditions

at the surface of the cone. Therefore, by means of equation (B3) there

is obtained
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o T°-648]k_ (pr_)i/3 (Re_, Z)
CT : (2) 1/5 .0295 _bb <T-_/ 3cone surface

(B7)

L

i

2

2

7

The value of T'/T_ may be obtained from equation (B2) by using the

Mach number and static temperature of the inviscid flow at the surface

of the cone.

Hemispherical Shell

The input parameter for the hemispherical shell was defined in

appendix A as

i R2
S - hsp

where hsp is the heat-transfer coefficient at the stagnation point_

and may be written as

:

where w denotes wall conditions and SP denotes stagnation point.

The heat-transfer parameter N(m_ has been obtained by several inves-

\V_e/ w

tigators. One solution, due to Reshotko and Cohen, is presented in

figure 22 reproduced from reference 9- For free-stream Mach numbers

larger than about 2 a good approximation for the velocity gradient

IdU) is °btained by means °f a m°difiedNewt°nian fl°w'namely_SP
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where v denotes speed of sound and
By using this velocity gradient, hsp
stream conditions as

__d)l _/2
P_

X is tile ratio of specific heats.
maybe expressed in tems of free-

hsp =

Therefore

The heat-transfer parameter /\N(7_elw

the Rayleigh pitot pressure ratio.

is given in figure 22;
PSP

P_
is

L

i

2

2

7

Hemicylindrical Shell

In appendix A the heat-transfer-coefficient distribution for the

hemicylindrical shell ms ass_ed to be of the fo_

h(XR) = hSL cos X R

where X R is measured in a plane perpendicular to the cylinder axis.

This is a good approximation to the actual distribution for values of

X R of less than about 60 ° , for both yawed ard unyawed cylinders.

The heat-transfer coefficient on the stsgnation line of a cylinder

at a yaw angle A may be written
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L
i
2
2
7

(2_)1/4 _ _I/2fl k Nu_ /PSN_I/2(1 p_)l/4

The heat-transfer parameter l_NIv___I may be obtained from the solution

\w_e!

of reference 3 by Reshotko and Beckwith. At the stagnation line

N(_e) ' 0 46
-- ewCPr) •

W

!
where ew is the solution mentioned, and is presented in figure 23,

reproduced from reference 3-

In equation (Bg) the subscript N indicates that the quantity is

derived from the normal component of the free-streamMach number

MN = M_ cos A. Accordingly

vO,N : v_(l + y -IVM N2) I/2

and PSN is the pitot pressure ratio in a plane perpendicular to the
P_

cylinder axis.

Equation (B9) was obtained by use of a modified Newtonian velocity

gradient at the stagnation line 3 which applies only for MN_ 1.5. For

the velocity gradient at MN _ 1.5 see figure 9 of reference 3.
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